
Develop the SHM formulas
ClearAll["Global`*⋆"]

For the undamped case
undamped = DSolve[m y''[t] + k y[t] ⩵ 0, y[t], t]
(*⋆ numbered line (3) on p. 63 *⋆)

y[t] → C[1] Cos
k t

m
 + C[2] Sin

k t

m


simpfac = Simplifyundamped /∕.
k

m
→ ω0

{{y[t] → C[1] Cos[t ω0] + C[2] Sin[t ω0]}}

And a simplified version of undamped
simpconst =
simpfac /∕. {C[1] → A, C[2] → B} (*⋆ numbered line (4) on p. 63 *⋆)

{{y[t] → A Cos[t ω0] + B Sin[t ω0]}}

Whereas for the damped case
damped = DSolve[m y''[t] + c y'[t] + k y[t] ⩵ 0, y[t], t]
(*⋆ numbered line (5) on p. 64 *⋆)

y[t] → ⅇ
1
2

-− c
m
-−

c2-−4 k m

m
t
C[1] + ⅇ

1
2

-− c
m
+

c2-−4 k m

m
t
C[2]

The constant c is called the damping constant. The constant k is Hook’s, and m is the mass. 
On text p. 65 a box of cases is shown, as in the following grid.
Case I c2 > 4mk Distinct real roots λ1,λ2 Overdamping
Case II c2 = 4mk A real double root Critical damping
Case III c2 < 4mk Complex conjugate roots Underdamping

1 - 10 Harmonic oscillations (undamped motion)

1.  Initial value problem. Find the harmonic motion, numbered line (4), p. 63, that starts 
from y0 with initial velocity v0. Graph or sketch the solutions for ω0 = π, y0 = 1, and 
various v0 of your choice on common axes. At what t-values do all these curves intersect? 
Why?

ClearAll["Global`*⋆"]

The harmonic motion equation is y[t] = A Cos[ω0 t] + B Cos[ω0 t]. Only curves with 
the same y0 will work around to intersect with each other, so I limited the y0 to the one 
asked for. (I don’t know whether it’s a plot defect, but I have to exend the interval of t 
slightly to get the four curves to intersect at t=3π.)



The harmonic motion equation is y[t] = A Cos[ω0 t] + B Cos[ω0 t]. Only curves with 
the same y0 will work around to intersect with each other, so I limited the y0 to the one 
asked for. (I don’t know whether it’s a plot defect, but I have to exend the interval of t 
slightly to get the four curves to intersect at t=3π.)
Plot[{Evaluate@Table[ Cos[t] + B Sin[t], {B, 1, 3}], Cos[π t] + Sin[π t]},
{t, 0, 3.01 π}, PlotLegends → "Expressions",
PlotRange → {{0, 9.6}, {-−3.25, 3.25}}]

2 4 6 8

-−3

-−2

-−1

0

1

2

3

cos(t) + sin(t)
cos(t) + 2 sin(t)
cos(t) + 3 sin(t)
cos(π𝜋 t) + sin(π𝜋 t)

3.  Frequency. How does the frequency of the harmonic oscillation change if we (i) dou-
ble the mass, (ii) take a spring of twice the modulus? First find qualitative answers by 
physics, then look at formulas.

By increasing the mass it will increase inertia, lowering the frequency. By increasing the k-
factor, it decreases the range of motion, which speeds up the frequency. Looking at the 

formula km
2 π , doubling m reduces the frequency by 2  , and doubling k increases it by 

the same amount.

5.  Springs in parallel. What are the frequencies of vibration of a body of mass m = 5 kg 
(i) on a spring of modulus k1 = 20 nt/m, (ii) on a spring of modulus k2 = 45 nt/m, (iii) 
on the two springs in parallel? See the figure below.

For part (i)

Setting the problem up is easy since I already have the mass and the k factor, it being simply

20 /∕ 5

2 π
1

π

N[%] (*⋆ hertz *⋆)

0.31831

For part (ii), with k = 45
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90 /∕ 5

2 π
3

2 π

N[%] (*⋆ hertz *⋆)

0.675237

For part (iii), I am informed by Wikipedia that the spring constants are additive, thus

65 /∕ 5

2 π

13

2 π

N[%]

0.573841

The answers in the green cells above match those of the text.

7.  Pendulum. Find the frequency of oscillation of a pendulum of length L, neglecting air 
resistance and the weight of the rod, and assuming θ to be so small that Sin[θ] practically 
equals θ. See the figure below.

ClearAll["Global`*⋆"]

I just took the following off a site, https://www.school-for-champions.com/science/pendulum_equation-
s.htm#.XOnkD9NKjOQ. It turns out that the assumption about small θ is necessary, since other-
wise the simple-looking problem cannot be solved in closed form. When it is necessary to 
deal with larger angles, going with NDSolve is apparently a common option.
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freq =
g /∕ L

2 π

g
L

2 π

9.  Vibration of water in a tube. If 1 liter of water (about 1.06 US quart) is vibrating up 
and down under the influence of gravitation in a U-shaped tube of diameter 2 cm, what is 
the frequency? Neglect friction. See figure below.

ClearAll["Global`*⋆"]

I found this same problem developed at https://web.mit.edu/8.01t/www/materials/InClass/WE_-
Sol_W13D1-2.pdf. The following is a combination of that site and the text answer. The site 
description supposes that a quickly retracting piston initiates the height offset. I’ve also seen 
an influx of air pressure described as the initiator in this type of problem. It should be noted 
that the y-dimension and y=0 level exactly demarcate the halfway point on the excess right 
side height.
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y
(y=0)

γ = weight of a cubic meter of water = 1000 kg = 9800 nts force

The problem description gives the information that one liter of water is sloshing around. 
However, it may not be clear whether that liter comprises the total volume or just the 
darker-colored, 2y slug. If it was just the slug, then the y dimension could be calculated 
exactly based on the pipe diameter. However, the text leaves the y length unstated, imply-
ing that the liter volume is the whole thing. Anyway, I guess the whole mass is involved in 
the oscillation. But the π*(0.01)2*2 y meter3 plug mass is the cause of the restoring force 
under examination, that force tagged by the text answer as equal to (a γ y). As for the 
equation that will result in the frequency, how about
eqn = y''[t] + ω02 y[t] ⩵ 0

ω02 y[t] + y′′[t] ⩵ 0

The following is the solution to the equation, and though it reassuringly shows the form of 
SHM, it will not be used to crack the numerical value of the frequency.
sol = DSolve[eqn, y, t]

{{y → Function[{t}, C[2] Cos[t ω0] + C[1] Sin[t ω0]]}}

An equivalence or two from the text answer are unclear to me, so I will switch over to the 
the online site mentioned above to get a different perspective by grabbing the following.

ω0 =
2 g

L

Working now in meters, cubic meters, and kilograms. Area of liquid surface times length 
equals volume equivalent to one thousandth of a cubic meter, according to the problem 
description. 
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Solveπ *⋆ 0.012 *⋆ L ⩵ 0.001, L

{{L → 3.1831}}

And using the length I can solve for the frequency “kernel”.

ω0 =
2 g

L
/∕. {L → 3.1831, g → 9.80665}

2.48228

And convert to numerically expressed frequency.
2.481434947631652

2 π
(*⋆ hertz *⋆)

0.394933

The answer in the yellow cell above is close to the text answer of 0.4.

11 - 20 Damped motion

11.  Overdamping. Show that for numbered line (7), p. 65 to satisfy initial conditions 
y(0) = y0 and v(0) = v0 we must have c1 = [(1+α /∕ β) y0 + v0/β]/2 and c2 = 
[(1-−α /∕ β) y0 - v0 /β]/2.

13.  Initial value problem. Find the critical motion, numbered line (8), p. 66, that starts 
from y0 with initial velocity v0. Graph solution curves for α = 1, y0 = 1 and several v0 
such that (i) the curve does not intersect the t-axis, (ii) it intersects it at t = 1, 2, . . . , 5, 
respectively.

For this one it looks like I’m expected to work directly with numbered line (8),  
y[t] = (c1 + c2 t) ⅇ-−α t

It may be as well to let c1 remain equal to 1, and let c2 evolve around it.

TableSolve(1 + c2 t) ⅇ-−t ⩵ 0, {c2}, {t, 1, 5}

{{c2 → -−1}}, c2 → -−
1

2
, c2 → -−

1

3
, c2 → -−

1

4
, c2 → -−

1

5


The consolidated plot below is equivalent to the text answer.

 In the first curve in the legend, y0=1 and α = 1; the second curve has a different y0 and 
c1=2, c2=3; the other curves in the legend meet the intersection requirements of the prob-
lem description.
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Plotⅇ-−t, (2 -− 3 t) ⅇ-−2 t,

Evaluate@Table (1 + c2 *⋆ t) *⋆ ⅇ-− t, c2, -−1, -−
1

2
, -−

1

3
, -−

1

4
, -−

1

5
,

{t, 0, 5}, PlotLegends → "Expressions", PlotRange → {{0, 6}, {-−0.2, 1}},
AspectRatio → 2, PlotStyle → Thickness[0.004]

1 2 3 4 5 6

-−0.2

0.2

0.4

0.6

0.8

1.0

ⅇ-−t

(2 -− 3 t) ⅇ-−2 t

ⅇ-−t (1 -− t)

ⅇ-−t 1 -− t
2 

ⅇ-−t 1 -− t
3 

ⅇ-−t 1 -− t
4 

ⅇ-−t 1 -− t
5 

15.  Frequency. Find an approximation formula for ω*⋆ in terms of ω0 by applying the 
binomial theorem in numbered line (9) p. 67, and retaining only the first two terms. How 
good is the approximation in example 2, section III, p. 68?

Here is an example of using the binomial command in a series setting.

SumBinomial
1

2
, k (1 + x)k, {k, 0, 2}

1 +
1 + x

2
-−
1

8
(1 + x)2

And an example of a series with binomial persuasion.

NormalSeries(1 + a)1/∕2, {a, 0, 2}

1 +
a

2
-−
a2

8

In numbered line (9) the focus is on the following expression for ω*, which assents to 
factoring.
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In numbered line (9) the focus is on the following expression for ω*, which assents to 
factoring.

ω*⋆ ==
k

m
-−

c2

4 m2

1/∕2

==
k

m
1 -−

c2

4 m k

1/∕2

And the factored form can be expressed as a series.

k

m
SimplifyNormalSeries 1 -−

c2

4 m k

1/∕2

, {c, 0, 2}

1 -−
c2

8 k m

k

m

Applying the particular criteria of example 2, case III, I get

N 1 -−
c2

8 k m

k

m
/∕. {c → 10, m → 10, k → 90}

2.95833

The number in the green cell above matches the answer in the text.

17.  Underdamping. Determine the values of t corresponding to the maxima and minima 
of the oscillation y(t) = ⅇ-−t Sin[t]. Check your result by graphing y(t).

ClearAll["Global`*⋆"]

I do not understand the text answer regarding Tan[t]. I tried the command ExpToTrig, 
and Tan didn’t fall out. I just will plug around with some plots.

If a long view is taken of the function, a gigantic spike is seen out around t=-120.

Plotⅇ-−t Sin[t], {t, -−120, 100}, PlotRange → All

-−100 -−50 50 100

-−8×1051

-−6×1051

-−4×1051

-−2×1051

2×1051
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NMaximizeⅇ-−t Sin[t], -−120 < t < -−110, t

2.26304 × 1051, {t → -−118.595}

The adjacent minimum goes into deep water.

NMinimizeⅇ-−t Sin[t], -−120 < t < -−110, t

Minimize::wksol: Warning: thereis no minimumin the regionin whichthe
objectivefunctionis definedandtheconstraintsare satisfied; returninga resulton theboundary. 0

-−7.57222 × 1051, {t → -−120.}

There is another notable maximum close to negative zero.

Plotⅇ-−t Sin[t], {t, -−11, 15}, PlotRange → {{-−10, 15}, {-−500, 200}}

-−10 -−5 5 10 15

-−500

-−400

-−300

-−200

-−100

100

200

NMaximizeⅇ-−t Sin[t], -−6 < t < 4, t

{172.641, {t → -−5.49779}}

And a mild minimum is located to the right of it.

NMinimizeⅇ-−t Sin[t], -−6 < t < 0, t

{-−7.46049, {t → -−2.35619}}

Whereas, if I’m interested in the positive domain
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Plotⅇ-−t Sin[t], {t, -−1, 10}, PlotRange → {{0, 4}, {-−5, 5}}

1 2 3 4

-−4

-−2

0

2

4

A little hump is the tallest there is in this neighborhood.

NMaximizeⅇ-−t Sin[t], 0 < t < 10, t

{0.322397, {t → 0.785398}}

And there is a little undercurl for a minimum.

NMinimizeⅇ-−t Sin[t], 0 < t < 10, t

{-−0.013932, {t → 3.92699}}

19.  Damping constant. Consider an underdamped motion of a body of mass m = 0.5 kg. 
If the time between two consecutive maxima is 3 sec and the maximum amplitude 
decreases to 12  its initial value after 10 cycles, what is the damping constant of the 
system?

ClearAll["Global`*⋆"]

Looks like the frequency is 0.3333 hertz.

So I should be able to claim that
ω*⋆ ⩵ freq (2 π)

or
ω*⋆ = N[0.3333 (2 π)]

2.09419

But I also have that 

ω*⋆ =
k

m
-−

c2

4 m2

1/∕2

from up around problem 15. So if I knew what k was, I could calculate c directly. Aha, 
Wikipedia to the rescue (article on simple harmonic motion).
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Solve3 ⩵ 2 π
0.5

k
, k

{{k → 2.19325}}

and I can plug that k-value in 

2.09419 =
k

m
-−

c2

4 m2

1/∕2

and solve for c.

Solve
2.19325

0.5
-−
c2

1

0.5

⩵ 2.09419, c

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. 0

{{c → -−0.029466}, {c → 0.029466}}

However, the above values of c look somewhat different than the text answer.  The text 
answer says that c = 0.0231, less than what shows in yellow. But what if I use the text 
answer c-value to work backward to the k-value.

Solve
k

0.5
-−

(0.0231)2

1

0.5

⩵ 2.09419, k

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. 0

{{k → 2.19308}}

Now, comparing 2.19308 with 2.19325, they do not look that far apart. The ratio
2.19325

2.19308

1.00008

looks pretty close. It appears that the damping constant is insanely sensitive to the k-factor.

The following manipulated plot comes from the Wolfram Demonstration, “Forced Oscillator 
with Damping”, authored by Rob Morris, and uses the values arrived at above. Though I 
don’t know why, I note that the six input fields on the left need to be dropped down 
(opened for entry) in order to get the plot trace to show accurately.  When this is done, the 
first cycle “hump”, running from t=0 to t=2.6, has a leading amplitude of 0.9 and a trailing 
amplitude of 1.1 (which may be what is meant by an amplitude of 1.0). The tenth cycle 
“hump” has a leading amplitude of 0.55 and a trailing amplitude of 0.45, with the result 
that the four half amplitudes cited reveal exactly a 50% reduction in ten cycles, the out-
come required by the problem description.
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DPPlot[bb_, mm_, kk_, xinit_, AA_, ωω_, tfinal_] := Module[{},
Clear[t, x, A, ω, k, b, m];
With[
{sol = First@NDSolve[{x''[t] + (bb /∕ mm) x'[t] + (kk /∕ mm) x[t] ⩵ AA /∕ mm *⋆

Cos[ωω t], x'[0] ⩵ 0, x[0] ⩵ xinit}, x, {t, 0, tfinal}]},
Plot[Evaluate[x[t] /∕. sol], {t, 0, tfinal}, PlotRange →

{{0, tfinal}, {-−1, 1}}, ImageSize → {425, 350},
ImagePadding → {{35, 35}, {20, 40}},
AxesLabel → {Style["t", 14, Bold, Italic],

Style["x(t)", 14, Italic, Bold]}, GridLines → All,
PlotLabel → TraditionalForm[m x''[t] + b x'[t] + k x[t] ⩵ A Cos[ω t]]]]]
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Manipulate[Column[
{Switch[plottype, "position", DPPlot[bb, mm, kk, xinit, AA, ωω, time],

"phase", DPPhasePlot[bb, mm, kk, xinit, AA, ωω, zoom, time]],
Style[Row[{"mass = ", mm, Spacer[20], "|", Spacer[20],

"spring constant = ", kk, Spacer[20], "|",
Spacer[30], "damping = ", bb}], "Label"],

Style[Row[{"driving amplitude = ", AA, Spacer[20], "|",
Spacer[20], "driving frequency = ", ωω}], "Label"]}, Center],

{{mm, 0.5, "mass"}, 0, 10, .01, ImageSize → Tiny},
{{kk, 2.193, "spring constant"}, 0, 50, .1, ImageSize → Tiny},
{{bb, 0.0294, "damping"}, 0, 5, .01, ImageSize → Tiny},
{{xinit, 0, "initial position"}, 0, 10, ImageSize → Tiny}, Delimiter,
"forcing function", {{AA, 1, "amplitude"}, 0, 10, .05, ImageSize → Tiny},
{{ωω, 0.333, "frequency", ImageSize → Tiny},
0, 2 Pi, .01, ImageSize → Tiny},

Delimiter,
{{plottype, "position", "plot type"}, {"position", "phase"}},
{{zoom, 10}, .5, 20, ImageSize → Tiny, Enabled → plottype ⩵ "phase"},
Delimiter,
{{time, 50}, 10, 200, ImageSize → Tiny},
SaveDefinitions → True, AutorunSequencing → {2, 3, 5}]

mass

springconstant

damping

initialposition

forcingfunction
amplitude

frequency

plottype position phase

zoom

time

mass = 0.5 | spring constant = 2.1 | damping = 0.02

driving amplitude = 1. | driving frequency = 0.33
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